
27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 1/12

Quick reference for manual unpacking
2012-04-01

Abhishek Singh
FireEye, USA
Editor: Helen Martin
Abstract

By packing their malicious executables, malware authors can be sure that when they are opened in a
disassembler they will not show the correct sequence of instructions, thus making malware analysis a
more lengthy and di�icult process. Abhishek Singh provides a quick reference guide for unpacking
malware from some of the most commonly used packers.

Copyright © 2012 Virus Bulletin

Table of contents

Manual unpacking
ASPack
KKrunchy
PECompact v2.x
NSPack
FSG 1.33
FSG 2.0
UPX
PEDiminisher
MEW

Conclusion

Malware authors utilize packers to make it di�icult for their malware to be reversed – the packers
encode the original instructions. By packing a malicious executable, its author can be sure that when it
is opened in a disassembler it will not show the correct sequence of instructions. Packers add some
instructions at the top of the binary to unpack the executable. The process of decryption is performed
in memory at run time, and the state of the application is restored. Since packers work on a compiled
executable, the unpacking module must be independent of the original application.

One of the methods that can be used to locate the original entry point (OEP) of the file is to apply break
points on the following APIs:

27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 2/12

GetLoadLibraryA
GetVersionExA
GetEnvironmentA
LoadLibraryA
GetProcAddress
IniHeap

These APIs are called by the packers’ start-up routines in order to set up the execution environment.
When a breakpoint is applied to these routines, we are close to the OEP. When the break point triggers,
we can use step-by-step tracing to locate the initialization of the stack frame. The start of the function
can be recognized by the initialization of the stack frame.

push ebp
mov ebp, esp

The instructions shown above denote the start of the stack frame. Once these instructions are located,
the debugged process can be dumped to obtain the unpacked version of the file.

In the following sections we describe some common packers and the assembly instructions that can be
used to locate the OEP.

Manual unpacking
The purpose of this section is to provide a quick reference guide that will assist malware analysts in the
unpacking of malware and reduce the response time for malware analysis – the full technical details of
each packer have therefore been omitted.

ASPack
ASPack is an advanced Windows 32 executable compressor capable of reducing the file size of 32-bit
Windows (95/98/ME/NT/2000/XP/2003/Vista/7) programs by as much as 70%. It is also used by some
hackers to protect their programs.

To unpack ASPack, follow the first jmp, and follow JMP EAX. Later in the code you will find the following
instructions:

mov eax,1
retn 0C
push 0
retn

Once these instructions have been identified, as shown in Figure 1, a break point should be put on
RETN. When the break point triggers, we are at the OEP. The process can be dumped at this stage,
leaving us with the unpacked executable.

27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 3/12

Figure 1. Instructions before the code is unpacked.

OllyScript code for the automatic unpacking of ASPack is shown in FIgure 2. The instruction ‘findop eip,
#6800000000#’ locates the PUSH 0 instruction in a debugged process packed with ASPack. Once this
instruction is located, the debugger steps once to reach the RETN instruction. The debugger then steps
again to reach the OEP instruction. Once the OEP instruction is located the debugger steps once more
to reach the OEP. The debugged process can now be dumped to get the unpacked version of the file.

Figure 2. OllyScript code used to locate the OEP for ASPack.

KKrunchy
KKrunchy [1] is a small executable packer intended for 64k intros. It does not try to pack DLLs and
cannot handle exports or TLS. It performs a transform on the input code to allow it to compress better.
It will fill uninitialized data sections with zeros and then pack them together with the rest of the code.
KKrunchy is o�en used by malware authors to prevent AV analysts from reversing their code.

In order to unpack KKrunchy, put a break point on LoadLibraryA. When the break point triggers, step
the debugger and search for the initialization of the stack frame. Once the stack frame initialization is
complete, dump the debugged process. The dumped process is the unpacked version of the
executable.

PECompact v2.x
PECompact [2] is fully compatible with DEP and code signing, and provides support for Windows 7 and
Windows 2008. It provides a good compression ratio compared to other compressors such as ASPack.
The PECompact [3] loader consists of three components. The first is the SEH entry, which transfers
control to the second component, the loader decoder. The loader decoder decodes the code and
invokes the third component, the primary loader. The loader decoder is stored in the last section (or
the second-to-last section if relocations have been preserved). The primary loader exists in
uncompressed form at runtime in dynamically allocated memory. To hide the transfer of control, an
SEH frame is set up and there is an exception. The exception handler then modifies the code at the
exception address to a JMP and continues execution.

27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 4/12

Figure 3 shows PECompact’s exception handler. The instruction sequence ‘PUSH EAX, PUSH DWORD
PTR FS:[0], MOV DWORD PTR FS:[0], ESP’ sets up the SEH frame. The instruction ‘XOR EAX, EAX’ sets the
value in EAX to zero. The instruction ‘MOV DWORD PTR DS:[EAX], ECX’ triggers the exception.

Figure 3. The PECompact exception handler.

To unpack PECompact, follow the exception and step through the code until the instructions shown in
Figure 4 are observed. JMP EAX is the jump to the OEP.

Figure 4. PECompact instructions before unpacking.

Set a break point on JMP EAX, step once, and observe the initialization of the stack frame as shown in
Figure 5. Dump the process. The dumped process will be the unpacked executable.

Figure 5. Initialization of the stack frame.

The logic shown in Figure 4 can be converted into script such as that shown in Figure 6 (the script is
available from Open RCE [4]).

Figure 6. OllyScript for PECompact.

27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 5/12

The instruction ‘find eip, #8BC65A5E5F595B5DFFE0#’ locates the instructions ‘MOV EAX ESI, POP EDX,
POP ESI, POP EDI, POP ECX, POP EBX, POP EBP, JMP EAX’. Once these are located, the script steps once
at the JMP instruction and the debugger is at the OEP. The debugged process now can be dumped to
obtain the unpacked version of the file.

NSPack
NSPack [5] is capable of compressing EXE, DLL, OCX and SCR files. It also has the ability to compress 64-
bit executables. It provides support to compress files packed by other packers such as UPX, ASPack and
PECompact. It supports direct compression of directories or multiple files. This packer is quite
commonly used by malware authors.

As shown in Figure 7, the packer starts with the instructions PUSHFD, PUSHAD.

Figure 7. The starting instructions for NSPack.

Check for equivalent POPAD and POPFD instructions, as shown in Figure 8. The JMP instruction
follows. Put a break point on the JMP instruction. When the break point triggers, step once and dump
the process to obtain the unpacked file.

Figure 8. NSPack instructions before unpacking.

The abovementioned logic can be converted into the OllyScript shown in Figure 9. The instruction ‘find
eip, #619DE9#’ locates the instruction POPAD, followed by POPFD, followed by a JMP instruction. Once
these are located, the code is debugged, step by step, until the JMP instruction is executed – the
debugger has then reached the OEP instruction. By using a plug-in like OllyDump, the process can be
dumped to obtain the unpacked version of the file.

Figure 9. OllyScript used to locate the OEP for NSPack.

FSG 1.33
FSG stands for Fast Small and Good, and is currently used to pack various malware. It was originally
created to pack assembly demos. Since it has a small loader, it is one of the most desirable packers for
small executables.

27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 6/12

In order to obtain the unpacked executable file for FSG 1.33, put a break point on the LoadLibraryA
function, as shown in Figure 10.

Figure 10. The LoadLibraryA function in FSG 1.33.

When the break point triggers, step a few instructions below until the following instructions are seen:

dec byte ptr [esi]
jz xxxxxxxx
PUSH ESI
PUSH EDP
CALL DWORD PIR D5:[EBX=4]

When JE Address triggers, we can observe the initialization of the stack frame. We are at the OEP, so
dump the process to get the unpacked version of the file.

Figure 11. Instructions denoting the end of FSG.

FSG 2.0
For version 2.0 of the FSG packer, the instructions that indicate the end of the FSG stub are as follows:

move eax (edi)
inc eax
js address
jnz address
jmp dword ptr [ebx+0Ch]

27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 7/12

In order to manually unpack a file packed with FSG 2.0, put a break point on LoadLibraryA and execute
the compressed file. When it breaks, clear the break point and execute until return (Ctrl -f9). Step
through the debugged application until the instructions shown in Figure 12 are reached.

Figure 12. Instructions reached before unpacking FSG 2.0.

Here, ‘JMP DWORD PTR DS: PTR [ebx+0Ch]’ is the jump to OEP. Once the JMP instruction is executed,
dump the process to get the unpacked version of the file.

UPX
UPX [6] stands for Ultimate Packer for eXecutables. It o�ers an excellent compression ratio which is
better than WinZip, Zip and GZIP. It also maintains a checksum for both compressed and
uncompressed files. It uses compression algorithms like UCL [7]. UCL has the inherent advantage that
the decompressor can be implemented in a few hundred bytes of code. Many malware families such as
Qakbot are packed using UPX. It o�ers very fast compression and decompression speeds: ~10MB/s on a
Pentium 133. It also o�ers support for LZMA compression and has support for BSD. LZMA
decompression is disabled on the 16-bit platform due to the slow decompression speed on older
platforms. It also provides support for two types of decompression routines. The first is the in-place
technique, which decompresses the executable in memory. In-place decompression is possible only for
some platforms. The extraction of a temporary file, even though it uses extra overhead, allows any
executable file format to be packed.

In order to unpack UPX using a manual approach, the end of the UPX routine must be identified. The
end of the UPX routine can be identified by the instructions CALL, POPAD and JMP, as shown in Figure
13. Put a break point on the JMP instruction. The JMP instruction will lead to initialization of the stack
frame. A�er the JMP instruction has executed, dump the process by using a plug-in such as OllyDump,
and the program is unpacked.

Figure 13. UPX end of routine instructions.

27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 8/12

Figure 14. The OllyScript used to unpack UPX.

The script shown in Figure 14 is the implementation of the logic used to locate the OEP. The instruction
‘findop eip, #61#’ locates the assembly instruction POPAD, sets a break point on it, and then executes
the code packed with UPX. Once the break point is triggered, the instruction ‘findop eip, #E9????????#’
locates the JMP instruction and sets a break point on it. When the break point triggers, the debugger
steps once in the code and is at the OEP. The debugged process can be dumped to get the unpacked
version of the file.

PEDiminisher
PEDiminisher is a simple PE packer. It uses the aplib compression/decompression library. Many AV
engines have the ability to unpack files packed with PEDiminisher to check for malicious content.

The end routine for PEDiminisher is shown below:

pop EBP
POP EDI
POP ESI
POP EDX
POP ECX
POP EBX
JMP EAX

For unpacking, the end instructions must first be located in the packed file (as shown in Figure 15). JMP
EAX is the jump to the OEP. Set a break point at the JMP instruction, step once and then dump the
process to get the unpacked version of the file.

27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 9/12

Figure 15. The end instruction for PEDiminisher.

Figure 16. The OllyScript used to unpack PEDiminisher.

The instruction ‘find eip, #5D5F5E5A95BFFE0#’ locates the instructions ‘POP EBP, POP EDI, POP ESI,
POP EDX, POP ECX, POP EBX, JMP EAX’. The script then steps through the debugger until it reaches JMP
EAX. Once it is at JMP EAX, the code steps once and is at the OEP. The OllyDump plug-in can be used to
dump the process and we are le� with the unpacked version of the executable file.

MEW
MEW [8] is an executable tool which was designed to handle small files. It works on 32-bit workstations
and uses the LZMA algorithm. It strips reloc tables, Delphi resources, and unused resources. Even
though it was designed to handle small files, it can compress large files as well.

The last instruction in the MEW stub, as shown in Figure 17, is RETN. A�er this instruction a jump to the
OEP takes place. Set a break point on the RETN instruction. When the break point is triggered, as shown
in Figure 17, step once and then dump the process to get the unpacked version of the file.

27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 10/12

Figure 17. The last instructions for the MEW packer.

The logic used to locate the OEP for MEW is shown in Figure 18. The code ‘findop eip, #C3#’ locates the
RETN instruction in the debugged process packed with the MEW packer. Once the RETN instruction is
located, the debugger steps once and is at the OEP. The OllyDump plug-in can be used to dump the
process and we are le� with the unpacked version of the executable file.

Figure 18. The OllyScript used to unpack MEW.

Conclusion
Reducing the time it takes to perform malware analysis is very important. For static analysis of
malware it is important that the malware is unpacked. There are many approaches to unpacking a
piece of malware – for example, it can be executed in a virtual environment and then we can capture a
memory snapshot of the executing malware. Once we get the snapshot, we can dump the unpacked
malware directly from memory. However, it is possible that not all of the code of the unpacked
malware will be in memory, so dumping a process from memory might not be an e�ective unpacking
method. Loading a packed malicious executable and executing step by step instructions in a debugger
is one of the best ways to locate the OEP and execute the malware. In this article we have provided
assembly instructions for the most commonly used packers which can be used to quickly unpack
malware. We have also provided OllyScripts for the logic to manually unpack the malware. This can
further aid in reducing response time for malware analysis.

Bibliography
[1] http://www.farbrausch.de/~fg/kkrunchy/ (http://www.farbrausch.de/~fg/kkrunchy/).

[2] http://pecompact.com/pecompact.php (http://pecompact.com/pecompact.php).

[3] http://www.bitsum.com/pec2av.htm (http://www.bitsum.com/pec2av.htm).

http://www.farbrausch.de/~fg/kkrunchy/
http://pecompact.com/pecompact.php
http://www.bitsum.com/pec2av.htm

27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 11/12

[4] http://www.openrce.org/downloads/details/156/PECompact_v.2.40_-_OEP_finder
(http://www.openrce.org/downloads/details/156/PECompact_v.2.40_-_OEP_finder).

[5] http://nspack.download-230-13103.programsbase.com/ (http://nspack.download-230-
13103.programsbase.com/).

[6] http://upx.sourceforge.net/ (http://upx.sourceforge.net/).

[7] http://www.oberhumer.com/opensource/ucl/ (http://www.oberhumer.com/opensource/ucl/).

[8] http://www.so�pedia.com/get/Programming/Packers-Crypters-Protectors/MEW-SE.shtml
(http://www.so�pedia.com/get/Programming/Packers-Crypters-Protectors/MEW-SE.shtml).

(https://twitter.com/share?
text=Quick

reference for
manual

unpacking&url=https://www.virusbulletin.com/virusbulletin/2012/04/quick-
reference-manual-

unpacking)

(https://www.facebook.com/sharer.php?
u=https://www.virusbulletin.com/virusbulletin/2012/04/quick-
reference-manual-

unpacking)

(https://www.linkedin.com/shareArticle?
mini=true&url=https://www.virusbulletin.com/virusbulletin/2012/04/quick-
reference-manual-

unpacking&title=Quick
reference for

manual unpacking)

(https://plus.google.com/share?
url=https://www.virusbulletin.com/virusbulletin/2012/04/quick-
reference-manual-

unpacking)

(https://www.reddit.com/submit?
url=https://www.virusbulletin.com/virusbulletin/2012/04/quick-
reference-manual-

unpacking)

Latest articles:
Throwback Thursday: Olympic Games
(/virusbulletin/2016/august/throwback-thursday-olympic-games/)
In 1994, along with the Olympic Games came an Olympic virus, from a group of Swedish virus authors
calling themselves ‘Immortal Riot’. Mikko Hyppönen had the details.

Throwback Thursday: Holding the Bady
(/virusbulletin/2016/07/throwback-thursday-holding-bady/)
In 2001, ‘Code Red’ caused White House administrators to change the IP address of the o�icial White
House website, and even penetrated the mighty Microso�’s own IIS servers. In August 2001, Costin Raiu
analysed the Win32/Bady.worm,

The Journey of Evasion Enters Behavioural Phase
(/virusbulletin/2016/07/journey-evasion-enters-behavioural-phase/)
No malware author wants their piece of code to be easy to detect. Over time, several di�erent
approaches have been put into action to detect malware, and in response, malware authors have put
into action di�erent methods of evading them. This paper…

Throwback Thursday: You Are the Weakest Link, Goodbye! -
Passwords, Malware and You (/virusbulletin/2016/07/throwback-
thursday-you-are-weakest-link-goodbye-passwords-malware-and-
you/)
Have you heard the one about the computer user who used their pet’s name as their password? Just
like jokes, it seems the old ones and the obvious ones are considered the best when it comes to users

http://www.openrce.org/downloads/details/156/PECompact_v.2.40_-_OEP_finder
http://nspack.download-230-13103.programsbase.com/
http://upx.sourceforge.net/
http://www.oberhumer.com/opensource/ucl/
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/MEW-SE.shtml
https://twitter.com/share?text=Quick%20reference%20for%20manual%20unpacking&url=https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking
https://www.facebook.com/sharer.php?u=https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking
https://www.linkedin.com/shareArticle?mini=true&url=https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking&title=Quick%20reference%20for%20manual%20unpacking
https://plus.google.com/share?url=https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking
https://www.reddit.com/submit?url=https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking
https://www.virusbulletin.com/virusbulletin/2016/august/throwback-thursday-olympic-games/
https://www.virusbulletin.com/virusbulletin/2016/07/throwback-thursday-holding-bady/
https://www.virusbulletin.com/virusbulletin/2016/07/journey-evasion-enters-behavioural-phase/
https://www.virusbulletin.com/virusbulletin/2016/07/throwback-thursday-you-are-weakest-link-goodbye-passwords-malware-and-you/

27.8.2016 Virus Bulletin :: Quick reference for manual unpacking

https://www.virusbulletin.com/virusbulletin/2012/04/quick-reference-manual-unpacking 12/12

selecting their passwords. Martin Overton looks at…

New Keylogger on the Block (/virusbulletin/2016/07/new-keylogger-
block/)
This paper provides an overview of the KeyBase trojan, both the keylogger itself and the server-side
management component. Additionally, we will look at an example of when this trojan was used.

About us (/about-vb/about-us/)

Contact us (/about-vb/contact-us/)

Advisory board (/about-vb/advisory-board/)

Press information (/about-vb/press/)

Security events calendar (/resources/calendar/)

Security jobs (/resources/jobs/)

Testing (/testing/)

VB100 (/testing/vb100/)

VBSpam (/testing/vbspam/)

VBWeb (/testing/vbweb/)

Consultancy services (/testing/consultancy-services/)

Spammers' Compendium (/resources/spammerscompendium/)

VB2016 (Denver) (/conference/vb2016/)

VB2015 (Prague) (/conference/vb2015/)

VB2014 (Seattle) (/conference/vb2014/)

VB2013 (Berlin) (/conference/vb2013/)

VB2012 (Dallas) (/conference/vb2012/)

Older conferences (/conference/vb-conference-archive/)

(https://plus.google.com/118162626827080883932)

(https://www.facebook.com/virusbulletin)

(https://www.youtube.com/user/virusbtn)

©1989-2016 Virus Bulletin. Privacy policy (/about-vb/privacy-policy/) Cookies (/about-vb/privacy-
policy/cookies/) Terms and Conditions (/about-vb/terms-and-conditions/)

https://www.virusbulletin.com/virusbulletin/2016/07/new-keylogger-block/
https://www.virusbulletin.com/about-vb/about-us/
https://www.virusbulletin.com/about-vb/contact-us/
https://www.virusbulletin.com/about-vb/advisory-board/
https://www.virusbulletin.com/about-vb/press/
https://www.virusbulletin.com/resources/calendar/
https://www.virusbulletin.com/resources/jobs/
https://www.virusbulletin.com/testing/
https://www.virusbulletin.com/testing/vb100/
https://www.virusbulletin.com/testing/vbspam/
https://www.virusbulletin.com/testing/vbweb/
https://www.virusbulletin.com/testing/consultancy-services/
https://www.virusbulletin.com/resources/spammerscompendium/
https://www.virusbulletin.com/conference/vb2016/
https://www.virusbulletin.com/conference/vb2015/
https://www.virusbulletin.com/conference/vb2014/
https://www.virusbulletin.com/conference/vb2013/
https://www.virusbulletin.com/conference/vb2012/
https://www.virusbulletin.com/conference/vb-conference-archive/
https://plus.google.com/118162626827080883932
https://www.facebook.com/virusbulletin
https://www.youtube.com/user/virusbtn
https://www.virusbulletin.com/about-vb/privacy-policy/
https://www.virusbulletin.com/about-vb/privacy-policy/cookies/
https://www.virusbulletin.com/about-vb/terms-and-conditions/

